Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Neurobiol Dis ; 194: 106469, 2024 May.
Article En | MEDLINE | ID: mdl-38485093

A dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera, and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.


Epilepsy , Gastrointestinal Microbiome , Status Epilepticus , Humans , Child , Rats , Animals , Seizures , Inflammation
2.
Nutrients ; 16(2)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38257165

(1) Background: The first 1000 days of life constitute a critical window of opportunity for microbiota development. Nutrients play a crucial role in enriching and diversifying the microbiota, derived not only from solid food but also from maternal dietary patterns during gestation. (2) Methods: We conducted a comprehensive literature review using the PubMed database, covering eleven years (2013-2023). We included English-language reviews, original research papers, and meta-analyses, while excluding case reports and letters. (3) Results: Consensus in the literature emphasizes that our interaction with a multitude of microorganisms begins in the intrauterine environment and continues throughout our lives. The existing data suggest that early nutritional education programs, initiated during pregnancy and guiding infant diets during development, may influence the shaping of the gut microbiota, promoting long-term health. (4) Conclusions: Further research is necessary in the coming years to assess potential interventions and early nutritional models aimed at modulating the pediatric microbiota, especially in vulnerable populations such as premature newborns.


Gastrointestinal Microbiome , Microbiota , Infant, Newborn , Infant , Female , Pregnancy , Humans , Child , Weaning , Consensus , Databases, Factual
3.
iScience ; 26(12): 108502, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38125023

Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.

4.
iScience ; 26(9): 107594, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37744404

Leishmaniasis is a tropical disease prevalent in 90 countries. Presently, there is no approved vaccine for human use. We developed a live attenuated L. mexicana Cen-/-(LmexCen-/-) strain as a vaccine candidate that showed excellent efficacy, characterized by reduced Th2 and enhanced Th1 responses in C57BL/6 and BALB/c mice, respectively, compared to wild-type L. mexicana (LmexWT) infection. Toward understanding the immune mechanisms of protection, we applied untargeted mass spectrometric analysis to LmexCen-/- and LmexWT infections. Data showed enrichment of the pentose phosphate pathway (PPP) in ears immunized with LmexCen-/-versus naive and LmexWT infection. PPP promotes M1 polarization in macrophages, suggesting a switch to a pro-inflammatory phenotype following LmexCen-/- inoculation. Accordingly, PPP inhibition in macrophages infected with LmexCen-/- reduced the production of nitric oxide and interleukin (IL)-1ß, hallmarks of classical activation. Overall, our study revealed the immune regulatory mechanisms that may be critical for the induction of protective immunity.

5.
iScience ; 26(9): 107593, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37744403

Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.

6.
Parasite Immunol ; 45(7): e12984, 2023 Jul.
Article En | MEDLINE | ID: mdl-37183939

Leishmaniasis is considered as one of the 20 neglected tropical diseases. Current methods of leishmanial diagnosis depend on conventional laboratory-based techniques, which are time-consuming, costly and require special equipment and trained personnel. In this context, we aimed to provide an immuno field effect transistors (ImmunoFET) biosensor that matches the conventional standards for point-of-care (POC) monitoring and detection of Leishmania (L.) donovani/Leishmania major. Crude antigens prepared by repeated freeze thawing of L. donovani/L. major stationary phase promastigotes were used for ELISA and ImmunoFETs. Lesishmania-specific antigens were serially diluted in 1× PBS from a concentration of 106 -102 parasites/mL. A specific polyclonal antibody-based sandwich ELISA was established for the detection of Leishmania antigens. An immunoFET technology-based POC novel assay was constructed for the detection of Leishmania antigens. Interactions between antigen-antibody at the gate surface generate an electrical signal that can be measured by semiconductor field-effect principles. Sensitivity was considered and measured as the change in current divided by the initial current. The final L. donovani/L. major crude antigen protein concentrations were measured as 1.50 mg/mL. Sandwich ELISA against the Leishmania 40S ribosomal protein detected Leishmania antigens could detect as few as 100 L. donovani/L. major parasites. An immunoFET biosensor was constructed based on the optimization of aluminium gallium nitride/gallium nitride (AlGaN/GaN) surface oxidation methods. The device surface was composed by an AlGaN/GaN wafer with a 23 nm AlGaN barrier layer, a 2 µm GaN layer on the silicon carbide (SiC) substrate for Leishmania binding, and coated with a specific antibody against the Leishmania 40S ribosomal protein, which was successfully detected at concentrations from 106 to 102 parasites/mL in 1× PBS. At the concentration of 104 parasites, the immunoFETs device sensitivities were 13% and 0.052% in the sub-threshold regime and the saturation regime, respectively. Leishmania parasites were successfully detected by the ImmunoFET biosensor at a diluted concentration as low as 150 ng/mL. In this study, the developed ImmunoFET biosensor performed well. ImmunoFET biosensors can be used as an alternative diagnostic method to ELISA. Increasing the sensitivity and optimization of immuno-FET biosensors might allow earlier and faster detection of leishmaniasis.


Leishmania donovani , Leishmania major , Leishmaniasis , Humans , Point-of-Care Systems , Leishmaniasis/parasitology , Ribosomal Proteins , Antibodies, Protozoan , Neglected Diseases
7.
NPJ Vaccines ; 7(1): 157, 2022 Dec 03.
Article En | MEDLINE | ID: mdl-36463228

Leishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen-/-) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen-/- parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen-/- parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen-/- down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen-/- immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen-/- parasites is safe and efficacious against the Old World visceral leishmaniasis.

8.
Pathogens ; 11(4)2022 Apr 02.
Article En | MEDLINE | ID: mdl-35456106

Leishmaniasis, caused by an infection of the Leishmania protozoa, is a neglected tropical disease and a major health problem in tropical and subtropical regions of the world, with approximately 350 million people worldwide at risk and 2 million new cases occurring annually. Current treatments for leishmaniasis are not highly efficacious and are associated with high costs, especially in low- and middle-income endemic countries, and high toxicity. Due to a surge in the incidence of leishmaniases worldwide, the development of new strategies such as a prophylactic vaccine has become a high priority. However, the ability of Leishmania to undermine immune recognition has limited our efforts to design safe and efficacious vaccines against leishmaniasis. Numerous antileishmanial vaccine preparations based on DNA, subunit, and heat-killed parasites with or without adjuvants have been tried in several animal models but very few have progressed beyond the experimental stage. However, it is known that people who recover from Leishmania infection can be protected lifelong against future infection, suggesting that a successful vaccine requires a controlled infection to develop immunologic memory and subsequent long-term immunity. Live attenuated Leishmania parasites that are non-pathogenic and provide a complete range of antigens similarly to their wild-type counterparts could evoke such memory and, thus, would be effective vaccine candidates. Our laboratory has developed several live attenuated Leishmania vaccines by targeted centrin gene disruptions either by homologous recombination or, more recently, by using genome editing technologies involving CRISPR-Cas9. In this review, we focused on the sequential history of centrin gene-deleted Leishmania vaccine development, along with the characterization of its safety and efficacy. Further, we discussed other major considerations regarding the transition of dermotropic live attenuated centrin gene-deleted parasites from the laboratory to human clinical trials.

9.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35236861

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

10.
Front Immunol ; 12: 748325, 2021.
Article En | MEDLINE | ID: mdl-34712235

Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.


Immunity, Innate , Leishmania donovani/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/immunology , Vaccine Development , Animals , Cytotoxicity, Immunologic , Dendritic Cells/immunology , Humans , Immune Evasion , Immunogenicity, Vaccine , Killer Cells, Natural/immunology , Macrophages/immunology , Macrophages/parasitology , Mast Cells/immunology , Metabolomics , Mice , Mice, Inbred C57BL , Monocytes/immunology , Natural Killer T-Cells/immunology , Neutrophils/immunology
11.
Expert Rev Vaccines ; 20(11): 1431-1446, 2021 Nov.
Article En | MEDLINE | ID: mdl-34511000

INTRODUCTION: Leishmaniasis is a major public health problem and the second most lethal parasitic disease in the world due to the lack of effective treatments and vaccines. Even when not lethal, leishmaniasis significantly affects individuals and communities through life-long disabilities, psycho-sociological trauma, poverty, and gender disparity in treatment. AREAS COVERED: This review discusses the most relevant and recent research available on Pubmed and GoogleScholar highlighting leishmaniasis' global impact, pathogenesis, treatment options, and lack of effective control strategies. An effective vaccine is necessary to prevent morbidity and mortality, lower health care costs, and reduce the economic burden of leishmaniasis for endemic low- and middle-income countries. Since there are several forms of leishmaniasis, a pan-Leishmania vaccine without geographical restrictions is needed. This review also focuses on recent advances and common challenges in developing prophylactic strategies against leishmaniasis. EXPERT OPINION: Despite advances in pre-clinical vaccine research, approval of a human leishmaniasis vaccine still faces major challenges - including manufacturing of candidate vaccines under Good Manufacturing Practices, developing well-designed clinical trials suitable in endemic countries, and defined correlates of protection. In addition, there is a need to explore Challenge Human Infection Model to avoid large trials because of fluctuating incidence and prevalence of leishmanasis.


Leishmaniasis Vaccines , Leishmaniasis , Humans , Leishmaniasis/epidemiology , Leishmaniasis/prevention & control , Vaccination , Vaccine Development
12.
Commun Biol ; 4(1): 929, 2021 07 30.
Article En | MEDLINE | ID: mdl-34330999

Visceral Leishmaniasis (VL), a potentially fatal disease is caused by Leishmania donovani parasites with no vaccine available. Here we produced a dermotropic live attenuated centrin gene deleted Leishmania major (LmCen-/-) vaccine under Good Laboratory Practices and demonstrated that a single intradermal injection confers robust and durable protection against lethal VL transmitted naturally via bites of L. donovani-infected sand flies and prevents mortality. Surprisingly, immunogenicity characteristics of LmCen-/- parasites revealed activation of common immune pathways like L. major wild type parasites. Spleen cells from LmCen-/- immunized and L. donovani challenged hamsters produced significantly higher Th1-associated cytokines including IFN-γ, TNF-α, and reduced expression of the anti-inflammatory cytokines like IL-10, IL-21, compared to non-immunized challenged animals. PBMCs, isolated from healthy people from non-endemic region, upon LmCen-/- infection also induced more IFN-γ compared to IL-10, consistent with our immunogenicity data in LmCen-/- immunized hamsters. This study demonstrates that the LmCen-/- parasites are safe and efficacious against VL and is a strong candidate vaccine to be tested in a human clinical trial.


Gene Deletion , Genes, Protozoan , Leishmania donovani/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/prevention & control , Leishmania donovani/genetics , Leishmaniasis, Visceral/immunology , Protozoan Proteins , Vaccines, Attenuated/immunology
13.
Front Cell Infect Microbiol ; 11: 685296, 2021.
Article En | MEDLINE | ID: mdl-34169006

Leishmaniasis is a neglected tropical disease that affects 12 million people worldwide. The disease has high morbidity and mortality rates and is prevalent in over 80 countries, leaving more than 300 million people at risk of infection. Of all of the manifestations of this disease, cutaneous leishmaniasis (CL) is the most common form and it presents as ulcerating skin lesions that can self-heal or become chronic, leading to disfiguring scars. This review focuses on the different pathologies and disease manifestations of CL, as well as their varying degrees of severity. In particular, this review will discuss self-healing localized cutaneous leishmaniasis (LCL), leishmaniasis recidivans (LR), mucocutaneous leishmaniasis (MCL), anergic diffuse cutaneous leishmaniasis (ADCL), disseminated leishmaniasis (DL), and Post Kala-azar Dermal Leishmaniasis (PKDL), which is a cutaneous manifestation observed in some visceral leishmaniasis (VL) patients after successful treatment. The different clinical manifestations of CL are determined by a variety of factors including the species of the parasites and the host's immune response. Specifically, the balance between the pro and anti-inflammatory mediators plays a vital role in the clinical presentation and outcome of the disease. Depending upon the immune response, Leishmania infection can also transition from one form of the disease to another. In this review, different forms of cutaneous Leishmania infections and their immunology are described.


Leishmaniasis, Cutaneous , Leishmaniasis, Mucocutaneous , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/complications
14.
Acta Trop ; 221: 105964, 2021 Sep.
Article En | MEDLINE | ID: mdl-34023304

The genetic diversity of Leishmania spp. in North Eastern Pakistan remains undetermined despite increased cases of cutaneous leishmaniasis (CL). This study was designed to decipher the molecular characterization and genetic diversity of Leishmania spp. in North Eastern Pakistan. Out of 13761 CL suspected cases, 567 cases were microscopically positive and confirmed as Leishmania spp. by internal transcribed spacer (ITS) gene amplification through the PCR- RFLP technique. Further, isolates were directly sequenced to conduct phylogenetic analysis for genetic diversity. Among suspected CL cases, Mirpur showed the highest proportion of CL infection with 4.85% (118/2431) of the cases, while the Neelum district showed the lowest percentage at 3.29% (9/273). The slide positivity rate, annual blood examination rate, and annual parasite incidence rate were 3.84, 0.27, and 0.01% respectively, and the incidence of CL in the age group 1-20 years old was higher in males (50.92%) than females (25.75%). The RFLP analysis and sequencing confirmed the occurrence of Leishmania tropica, Leishmania major, and Leishmania infantum. Leishmania tropica (p = 0.02) confirmed significantly higher nucleotides variation than L. major (p = 0.05). Current findings confirmed the prior assumption that anthroponotic CL is the primary CL form present in North Eastern Pakistan. Moreover, this is the first report based on molecular identification of L. major, and L. infantum from North Eastern Pakistan. This remarkable heterogeneity in the Leishmania spp. is the leading cause of treatment failure and emergence of new haplotypes. Therefore more extensive investigations are recommended from all geographical regions of North Eastern Pakistan, especially those using a large sample size.


Leishmania tropica , Leishmaniasis, Cutaneous , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Leishmania tropica/genetics , Leishmaniasis, Cutaneous/epidemiology , Male , Pakistan/epidemiology , Phylogeny , Polymorphism, Restriction Fragment Length , Young Adult
15.
Front Cell Infect Microbiol ; 11: 639801, 2021.
Article En | MEDLINE | ID: mdl-33816344

Leishmaniasis includes a spectrum of diseases ranging from debilitating cutaneous to fatal visceral infections. This disease is caused by the parasitic protozoa of the genus Leishmania that is transmitted by infected sandflies. Over 1 billion people are at risk of leishmaniasis with an annual incidence of over 2 million cases throughout tropical and subtropical regions in close to 100 countries. Leishmaniasis is the only human parasitic disease where vaccination has been successful through a procedure known as leishmanization that has been widely used for decades in the Middle East. Leishmanization involved intradermal inoculation of live Leishmania major parasites resulting in a skin lesion that following natural healing provided protective immunity to re-infection. Leishmanization is however no longer practiced due to safety and ethical concerns that the lesions at the site of inoculation that can last for months in some people. New genome editing technologies involving CRISPR has now made it possible to engineer safer attenuated strains of Leishmania, which induce protective immunity making way for a second generation leishmanization that can enter into human trials. A major consideration will be how the test the efficacy of a vaccine in the midst of the visceral leishmaniasis elimination program. One solution will be to use the leishmanin skin test (LST) that was also used for decades to determine exposure and immunity to Leishmania. The LST involves injection of antigen from Leishmania in the skin dermis resulting in a delayed type hypersensitivity (DTH) immune reaction associated with a Th1 immune response and protection against visceral leishmaniasis. Reintroduction of novel approaches for leishmanization and the leishmanin skin test can play a major role in eliminating leishmaniasis.


Leishmania major , Leishmaniasis, Visceral , Leishmaniasis , Antigens, Protozoan , Humans
16.
Biochem Soc Trans ; 49(1): 297-311, 2021 02 26.
Article En | MEDLINE | ID: mdl-33449103

Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.


Immunity/physiology , Leishmania/immunology , Leishmaniasis/immunology , Animals , Humans , Leishmaniasis/parasitology , Leishmaniasis/pathology , Psychodidae/parasitology
17.
Nat Commun ; 11(1): 3461, 2020 07 10.
Article En | MEDLINE | ID: mdl-32651371

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Leishmania major/genetics , Leishmania major/pathogenicity , Vaccines, Attenuated/therapeutic use , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Dexamethasone/pharmacology , Female , Flow Cytometry , Gene Editing , Genetic Engineering , Humans , Immunosuppression Therapy , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Psychodidae/parasitology , Reverse Transcriptase Polymerase Chain Reaction
18.
Nutrients ; 12(6)2020 Jun 06.
Article En | MEDLINE | ID: mdl-32517233

Contact hypersensitivity (CHS) is the most common occupational dermatological disease. Dendritic cells (DCs) mediate the sensitization stage of CHS, while T-cells facilitate the effector mechanisms that drive CHS. Black raspberry (Rubus occidentalis, BRB) and BRB phytochemicals possess immunomodulatory properties, but their dietary effects on CHS are unknown. We examined the effects of diets containing BRB and protocatechuic acid (PCA, a constituent of BRB and an anthocyanin metabolite produced largely by gut microbes), on CHS, using a model induced by 2,4-dinitrofluorobenze (DNFB). Mice were fed control diet or diets supplemented with BRB or PCA. In vitro bone-marrow derived DCs and RAW264.7 macrophages were treated with BRB extract and PCA. Mice fed BRB or PCA supplemented diets displayed decreased DNFB-induced ear swelling, marked by decreased splenic DC accumulation. BRB extract diminished DC maturation associated with reduced Cd80 expression and Interleukin (IL)-12 secretion, and PCA reduced IL-12. Dietary supplementation with BRB and PCA induced differential decreases in IL-12-driven CHS mediators, including Interferon (IFN)-γ and IL-17 production by T-cells. BRB extracts and PCA directly attenuated CHS-promoting macrophage activity mediated by nitric oxide and IL-12. Our results demonstrate that BRB and PCA mitigate CHS pathology, providing a rationale for CHS alleviation via dietary supplementation with BRB or BRB derived anthocyanins.


Dendritic Cells/immunology , Dermatitis, Contact/immunology , Dermatitis, Contact/therapy , Dietary Supplements , Dinitrofluorobenzene/adverse effects , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rubus , Animals , B7-1 Antigen/metabolism , Dermatitis, Contact/etiology , Dermatitis, Contact/metabolism , Disease Models, Animal , Interferon-gamma/metabolism , Interleukin-12/metabolism , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , T-Lymphocytes/immunology
19.
Article En | MEDLINE | ID: mdl-32363166

Parasitic infections pose a wide and varying threat globally, impacting over 25% of the global population with many more at risk of infection. These infections are comprised of, but not limited to, toxoplasmosis, malaria, leishmaniasis and any one of a wide variety of helminthic infections. While a great deal is understood about the adaptive immune response to each of these parasites, there remains a need to further elucidate the early innate immune response. Interleukin-33 is being revealed as one of the earliest players in the cytokine milieu responding to parasitic invasion, and as such has been given the name "alarmin." A nuclear cytokine, interleukin-33 is housed primarily within epithelial and fibroblastic tissues and is released upon cellular damage or death. Evidence has shown that interleukin-33 seems to play a crucial role in priming the immune system toward a strong T helper type 2 immune response, necessary in the clearance of some parasites, while disease exacerbating in the context of others. With the possibility of being a double-edged sword, a great deal remains to be seen in how interleukin-33 and its receptor ST2 are involved in the immune response different parasites elicit, and how those parasites may manipulate or evade this host mechanism. In this review article we compile the current cutting-edge research into the interleukin-33 response to toxoplasmosis, malaria, leishmania, and helminthic infection. Furthermore, we provide insight into directions interleukin-33 research may take in the future, potential immunotherapeutic applications of interleukin-33 modulation and how a better clarity of early innate immune system responses involving interleukin-33/ST2 signaling may be applied in development of much needed treatment options against parasitic invaders.


Communicable Diseases , Parasitic Diseases , Humans , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Parasitic Diseases/drug therapy
20.
Infect Immun ; 88(7)2020 06 22.
Article En | MEDLINE | ID: mdl-32312766

Chagas disease, caused by the intracellular protozoan parasite Trypanosoma cruzi, is a public health problem affecting 6 to 8 million people, mainly in Latin America. The role of microRNAs in the pathogenesis of Chagas disease has not been well described. Here, we investigate the role of microRNA-155 (miR-155), a proinflammatory host innate immune regulator responsible for T helper type 1 and type 17 (Th1 and Th17) development and macrophage responses during T. cruzi infection. For this, we compared the survival and parasite growth and distribution in miR-155-/- and wild-type (WT) C57BL/6 mice. The lack of miR-155 caused robust parasite infection and diminished survival of infected mice, while WT mice were resistant to infection. Immunological analysis of infected mice indicated that, in the absence of miR-155, there was decreased interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. In addition, we found that there was a significant reduction of CD8-positive (CD8+) T cells, natural killer (NK) cells, and NK-T cells and increased accumulation of neutrophils and inflammatory monocytes in miR-155-/- mice. Collectively, these data indicate that miR-155 is an important immune regulatory molecule critical for the control of T. cruzi infection.


Chagas Disease/genetics , Chagas Disease/parasitology , MicroRNAs/genetics , Trypanosoma cruzi , Animals , Chagas Disease/immunology , Chagas Disease/mortality , Cytokines/metabolism , Disease Progression , Disease Susceptibility/immunology , Genetic Predisposition to Disease , Kaplan-Meier Estimate , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Prognosis , Th1 Cells/immunology , Th1 Cells/metabolism , Trypanosoma cruzi/immunology
...